Copied to
clipboard

G = C3×C23.12D6order 288 = 25·32

Direct product of C3 and C23.12D6

direct product, metabelian, supersoluble, monomial

Aliases: C3×C23.12D6, C62.201C23, (C6×D4).5C6, C6.48(C6×D4), (C4×Dic3)⋊5C6, (C6×D4).28S3, (C3×C12).87D4, C12.17(C3×D4), (C6×Dic6)⋊15C2, (C2×Dic6)⋊10C6, C6.D49C6, (C2×C12).326D6, C23.12(S3×C6), (C22×C6).31D6, (Dic3×C12)⋊15C2, C12.89(C3⋊D4), (C6×C12).121C22, C3215(C4.4D4), (C2×C62).56C22, C6.124(D42S3), (C6×Dic3).100C22, (D4×C3×C6).7C2, C4.7(C3×C3⋊D4), (C2×C4).50(S3×C6), (C2×D4).6(C3×S3), C6.30(C3×C4○D4), C33(C3×C4.4D4), C2.12(C6×C3⋊D4), C22.58(S3×C2×C6), (C2×C12).32(C2×C6), (C3×C6).258(C2×D4), C6.149(C2×C3⋊D4), C2.16(C3×D42S3), (C2×C6).56(C22×C6), (C22×C6).30(C2×C6), (C3×C6).138(C4○D4), (C3×C6.D4)⋊25C2, (C2×C6).334(C22×S3), (C2×Dic3).37(C2×C6), SmallGroup(288,707)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C3×C23.12D6
C1C3C6C2×C6C62C6×Dic3Dic3×C12 — C3×C23.12D6
C3C2×C6 — C3×C23.12D6
C1C2×C6C6×D4

Generators and relations for C3×C23.12D6
 G = < a,b,c,d,e,f | a3=b2=c2=d2=1, e6=c, f2=dc=cd, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=bc=cb, fbf-1=bd=db, ce=ec, cf=fc, de=ed, df=fd, fef-1=e5 >

Subgroups: 394 in 179 conjugacy classes, 66 normal (26 characteristic)
C1, C2, C2, C2, C3, C3, C4, C4, C22, C22, C6, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C32, Dic3, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C2×D4, C2×Q8, C3×C6, C3×C6, C3×C6, Dic6, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C22×C6, C4.4D4, C3×Dic3, C3×C12, C62, C62, C4×Dic3, C6.D4, C4×C12, C3×C22⋊C4, C2×Dic6, C6×D4, C6×D4, C6×Q8, C3×Dic6, C6×Dic3, C6×C12, D4×C32, C2×C62, C23.12D6, C3×C4.4D4, Dic3×C12, C3×C6.D4, C6×Dic6, D4×C3×C6, C3×C23.12D6
Quotients: C1, C2, C3, C22, S3, C6, D4, C23, D6, C2×C6, C2×D4, C4○D4, C3×S3, C3⋊D4, C3×D4, C22×S3, C22×C6, C4.4D4, S3×C6, D42S3, C2×C3⋊D4, C6×D4, C3×C4○D4, C3×C3⋊D4, S3×C2×C6, C23.12D6, C3×C4.4D4, C3×D42S3, C6×C3⋊D4, C3×C23.12D6

Smallest permutation representation of C3×C23.12D6
On 48 points
Generators in S48
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(2 8)(4 10)(6 12)(13 27)(14 34)(15 29)(16 36)(17 31)(18 26)(19 33)(20 28)(21 35)(22 30)(23 25)(24 32)(38 44)(40 46)(42 48)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 22)(17 23)(18 24)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 37)(2 38)(3 39)(4 40)(5 41)(6 42)(7 43)(8 44)(9 45)(10 46)(11 47)(12 48)(13 27)(14 28)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)(22 36)(23 25)(24 26)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 17 43 25)(2 22 44 30)(3 15 45 35)(4 20 46 28)(5 13 47 33)(6 18 48 26)(7 23 37 31)(8 16 38 36)(9 21 39 29)(10 14 40 34)(11 19 41 27)(12 24 42 32)

G:=sub<Sym(48)| (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (2,8)(4,10)(6,12)(13,27)(14,34)(15,29)(16,36)(17,31)(18,26)(19,33)(20,28)(21,35)(22,30)(23,25)(24,32)(38,44)(40,46)(42,48), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,43)(8,44)(9,45)(10,46)(11,47)(12,48)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,25)(24,26), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,17,43,25)(2,22,44,30)(3,15,45,35)(4,20,46,28)(5,13,47,33)(6,18,48,26)(7,23,37,31)(8,16,38,36)(9,21,39,29)(10,14,40,34)(11,19,41,27)(12,24,42,32)>;

G:=Group( (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (2,8)(4,10)(6,12)(13,27)(14,34)(15,29)(16,36)(17,31)(18,26)(19,33)(20,28)(21,35)(22,30)(23,25)(24,32)(38,44)(40,46)(42,48), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,22)(17,23)(18,24)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,43)(8,44)(9,45)(10,46)(11,47)(12,48)(13,27)(14,28)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35)(22,36)(23,25)(24,26), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,17,43,25)(2,22,44,30)(3,15,45,35)(4,20,46,28)(5,13,47,33)(6,18,48,26)(7,23,37,31)(8,16,38,36)(9,21,39,29)(10,14,40,34)(11,19,41,27)(12,24,42,32) );

G=PermutationGroup([[(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(2,8),(4,10),(6,12),(13,27),(14,34),(15,29),(16,36),(17,31),(18,26),(19,33),(20,28),(21,35),(22,30),(23,25),(24,32),(38,44),(40,46),(42,48)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,22),(17,23),(18,24),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,37),(2,38),(3,39),(4,40),(5,41),(6,42),(7,43),(8,44),(9,45),(10,46),(11,47),(12,48),(13,27),(14,28),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35),(22,36),(23,25),(24,26)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,17,43,25),(2,22,44,30),(3,15,45,35),(4,20,46,28),(5,13,47,33),(6,18,48,26),(7,23,37,31),(8,16,38,36),(9,21,39,29),(10,14,40,34),(11,19,41,27),(12,24,42,32)]])

72 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D3E4A4B4C4D4E4F4G4H6A···6F6G···6O6P···6AE12A12B12C12D12E···12J12K···12R12S12T12U12V
order12222233333444444446···66···66···61212121212···1212···1212121212
size1111441122222666612121···12···24···422224···46···612121212

72 irreducible representations

dim111111111122222222222244
type+++++++++-
imageC1C2C2C2C2C3C6C6C6C6S3D4D6D6C4○D4C3×S3C3⋊D4C3×D4S3×C6S3×C6C3×C4○D4C3×C3⋊D4D42S3C3×D42S3
kernelC3×C23.12D6Dic3×C12C3×C6.D4C6×Dic6D4×C3×C6C23.12D6C4×Dic3C6.D4C2×Dic6C6×D4C6×D4C3×C12C2×C12C22×C6C3×C6C2×D4C12C12C2×C4C23C6C4C6C2
# reps114112282212124244248824

Matrix representation of C3×C23.12D6 in GL6(𝔽13)

100000
010000
003000
000300
000010
000001
,
100000
3120000
0012000
0001200
000010
0000112
,
100000
010000
001000
000100
0000120
0000012
,
1200000
0120000
001000
000100
0000120
0000012
,
100000
010000
0010000
0010400
0000122
0000121
,
8120000
050000
004800
003900
000053
000058

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,3,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,1,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,10,0,0,0,0,0,4,0,0,0,0,0,0,12,12,0,0,0,0,2,1],[8,0,0,0,0,0,12,5,0,0,0,0,0,0,4,3,0,0,0,0,8,9,0,0,0,0,0,0,5,5,0,0,0,0,3,8] >;

C3×C23.12D6 in GAP, Magma, Sage, TeX

C_3\times C_2^3._{12}D_6
% in TeX

G:=Group("C3xC2^3.12D6");
// GroupNames label

G:=SmallGroup(288,707);
// by ID

G=gap.SmallGroup(288,707);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,336,176,1598,303,9414]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^2=d^2=1,e^6=c,f^2=d*c=c*d,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=b*c=c*b,f*b*f^-1=b*d=d*b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^5>;
// generators/relations

׿
×
𝔽